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Abstract. h i e  have used an approximate Thomas-Fermi-Dirac-Weizsacker functional to 
evaluate the static polarisability of clusters and spheres of metallic atoms for excitation 
operators of the kind rLYLo. Calculations fo! Na and Ag systems made of up to N = 1000 
atoms have been carried out in the spherica1,jellium approximation for multipolarities L = 

1 to 15. These results have been combined wiih others obtained previously by the authors to 
estimate the width of the surface resonance and its evolution with L.  

1. Introduction 

Each electronic property exhibited by small metallic clusters as a function of their size 
converges towards the bulk surface value in a different manner that is not always well 
understood [ 11. Among these properties, the surface response to an applied multipolar 
field, in particular the static electric polarisability of metal microparticles, is an important 
electronic property related to the screening of the external field from the interior of the 
microparticle. Due to the high surface-to-volume ratio in these systems, quantum size 
effects must be taken into account carefully if one wants to have a realistic description 
of the electron response. 

Early calculations of the polarisability of small metallic spheres [2-51 predicted values 
of the dipolar polarisability LY smaller than the classical value aC1 = R3,  where R is the 
radius of the sphere. However, more recent calculations [6-151 lead to polarisabilities 
enhanced with respect to aC1. This enhancement is essentially due to the induced 
electronic density outside the boundary of the positive charge (electronic spill-out [6- 
71) that results in an effective increase in the cluster radius which was not taken into 
account before. These predictions have been nicely confirmed by recent experiments on 
small sodium and potassium clusters [16], which show that the polarisability is in fact 
60% to 80% higher than R3 and slowly converges towards the bulk (classical) value. 

The physically more relevant description of the electronic cloud is achieved in the 
context of the density functional theory (DFT) [17, 181. The static electric polarisability 
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is then obtained from the linear response theory [19,20] within the DFT. Recently [21], 
we have obtained the ml  and m3 moments of the random phase approximation (RPA) 
strength function corresponding to multipole operators and have applied them to the 
study of surface collective oscillations. 

The purpose of the present work is to complete this study by obtaining the electric 
polarisability, which is closely related to the m-, moment of the strength. We have 
considered only Na and Ag clusters made of up to N = 1000 atoms and multipolarities 
L S 15. However, our method is fast and numerically reliable for larger values of N and 
L .  It can also be used for other metallic materials provided the following basic hypotheses 

(i) the valence-electron cloud of the unperturbed cluster is described within the 
spherical jellium model (SJM) and a Thomas-Fermi-Weizsacker plus a local density 
approximation (LDA) (Dirac + Wigner) for exchange-correlation effects; 

apply: 

(ii) the external field acts only on the valence electrons. 
As these hypotheses are currently used in semiclassical calculations of metal clusters 

and metal spheres, the method we use in this work applies to both systems, which will 
be referred to as clusters. 

The paper is organised as follows: sum rules are defined in § 2, where we present a 
summary of the fundamental results of this technique and derive the main formulae that 
will be used in § 3 to obtain the numerical results. Finally, we draw our conclusions in 
§ 4. 

2. Sum rules 

2.1. General description 

Sum rules are moments of the strength function 

S(E) = 2 6(E - E,) l(nlQl(?)I2 
n 

where the sum (integral in the case of continuum spectrum) extends over all the excited 
states of the system. Q is the external field acting on the system and E,, In) and lcp) are 
the excitation energies, the excited states and the ground state (GS) of the system, 
respectively. The kth-order moment is defined as 

From these moments, the average energy and variance of the strength can be obtained: 
E = ml/mo 

o2 = m2/mo - m:/mi. 
(3)‘  

A direct computation of mk from equation (2) is hopeless in most practical cases 
because one should know the whole spectrum. However, odd moments of S ( E )  can be 
obtained with RPA precision as expectation values of suitable operators on the Hartree- 
Fock (HF) (or Kohn-Sham (KS) in the present context) ground state 19). 

Defining the ‘mean energies’ Ek = (mk/mk-2)1’2,  it has been shown [22] that 

These equations allow one to estimate the centroid E and variance U* of S(E) by 
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evaluating just three moments, m1, ml and m3. If most of the strength is concentrated 
in a narrow energyregion, as it is for some resonance states, then El and E3 are estimates 
of E. Conversely, whenever E l  and E3 are close we may infer that an appreciable part 
of the strength is concentrated around these values and that the response of the system 
to the operator Q is dominated by the resonance-state contribution. 

For m, and 1713 we have [22,23]: 

m, is straightforwardly evaluated from the first of equations ( 5 ) .  m3 is determined more 
easily by scaling the Slater determinant 1 cp) obtained by solving the KS equations for the 
unperturbed cluster. Indeed, defining the scaled wavefunction (WF) 

we get 

It has been shown [22] that equations (5) give m, and m3 with RPA precision if they are 
evaluated using the GS KS WF I cp) corresponding to the Hamiltonian H .  

The inverse energy-weighted sum rule 

is closely related to the static polarisability a: 

a = 2mPl .  (9) 
The static polarisability has been obtained for the dipole operator and other multipole 

operators in the RPA approximation from the RPA response function at zero energy 
[8, lo], and also from the so called modified Sternheimer equation [7], which is equivalent 
to the RPA calculation. It is also possible to get a with RPA precision from constrained 
HF (or KS) calculations. Indeed, solving the constrained problem 

H + A Q  (10) 
in the HF (KS) approximation, where A is a small constraining parameter, it is possible to 
show [24] that m-l RPA can be obtained as 

m-1 = - &(d(Q)J./dh)lA=o = 2(d2(H)L/di\.*)/A=O. (11) 
In almost all cases of practical interest, to solve the constrained HF (CHF) problem is 

a formidable task because the external field breaks the spherical symmetry of the 
unperturbed cluster. Only for the L = 0 volume mode for which Q is chosen as r2 or the 
spherical zeroth-order Bessel functionjo(qr), the Euler-Lagrange equations associated 
with equation (10) are easy to solve (see reference [21] for the case Q = r2 ) .  

Fortunately, the possibility of evaluating m-, (thus a) via a static constrained cal- 
culation justifies the applicability of approximated methods based on the hypothesis 
of local equilibrium [25], like the semiclassical Thomas-Fermi (TF) method. Loosely 
speaking, m-l characterises the hydrodynamical or adiabatic response of the system to 
an external field, whereas m3 does it for the elastic or sudden response [9]. 

The self-consistent (trial function density or fully variational) TF model has lent itself 
to evaluate m-l for a large class of constraining operators in nuclear physics (see 
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reference [23] for a review, and references therein). In the field of metallic clusters, it 
has been used by Snider and Sorbello to study the dipole polarisability with some success 
[6]. We shall show in the following sections that, when used properly, the method yields 
results comparable to full RPA calculations 1261 for moderately high multipolarities. 

2.2. ml and m3 for the multipole operafor rLYLo 

It is possible to show [21] (\see also reference [14]) that 
h2 
2m 

ml = - L(2L + 1) 

where no(r) is the unperturbed GS electronic density and m the electron mass. 
The m3 sum rule consists of three terms [21,14], one (m3( T ) )  coming from the kinetic 

energy and two from the electron-electron Coulomb energy (m3(e-e)) and the jellium- 
electron Coulomb energy (m,(J-e)). In the TF approximation (see reference [21] for a 
thorough discussion) they read: 

h2 
m3(T) = (:I2 iL(2L + 1)(L - 1)(2L - 1) Ix d r  r(2L-2) - 2m ,c 0 (r) 

n 

zi2 
m3(j-e) = - 2ne * (;) L 2  Inx drr(2L-2)n,$(r)  Ior drlr:nj(rl)  

where n,$ (r) denotes the GS unperturbed electronic density r-derivative and nj the 
constant jellium density 

with R = rsN1I3, r, being the radius per valence electron of the bulk monovalent metal, 
N the number of atoms in the cluster (i.e., the cluster number) and n+ the positive 
background density, n+ = 3/(4nr:). The unperturbed kinetic energy density reads: 

nj(r)  = n+O(R - r) (16) 

zo (r) = 9(3n2 )*I3 n#, (r) + (p/4) ( vno (r))2/no (r). (17) 
The second-order gradient term is the exact kinetic energy density for a one-electron 
system if p = 1. Snider and Sorbello have used /3 = 1/9 which is the Kirzhnits value [27], 
as well as 2/9. We have taken /3 as a free parameter which we have fixed in order to 
reproduce the E ,  RPA energy on average. 

Figure 1 shows the E3 energies (in atomic units, i.e. h = m = e2 = 1, energy unit = 
27.2 eV, length unit = 0.529 A) for different Na clusters. The full triangles correspond 
to the RPA calculations whereas the full curves show the TF calculation with an effective 
p. Figure 2 shows the E ,  energies corresponding to Ag. A more careful analysis than 
that made in reference [21] has led us to take /3 = 0.50 for Na and /3 = 0.40 for Ag as ' 
optimum values. We shall use these values as well as r,(Na) = 4 and r,(Ag) = 3 (in au) 
to obtain the multipole polarisabilities in the next sections. For the sake of completeness, 
we also show in these figures the results for the L = 0 volume mode, which is actually 
not considered in the present study. 

2.3. mPl for the multipole operator rLYLo 
To obtain mPl,  we have to solve the constrained problem 

E[n] = dr&(n)  + h Qn(r) d r  (18) I I 
where Q = rLYLn and h is a small parameter. The energy density functional E(n) is the 
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Figure 1. E 3  energies (in au) for Na clusters. From 
bottom to top the curves correspond to L = 1 to 
7 ,  and to L = 0 (upper curve and crosses). The 
full triangles correspond to the KS-RPA caiculation 
and the full curves to the TFDW calculation. The 
broken curves are only to guide the eye. The 
crosses near the L = 1 curve are the results of 
reference [9]. The two crosses near the bottom 
corner are experimental results from references 
[36] and [3?]. 

Figure 2. As figure 1 but for Ag clusters. 

same we have used in reference [21] and also that of reference [6], apart from the 
Weizsacker coefficient, as mentioned in § 2.2. In atomic units, it reads 

where y = 3/5(3n2)’13, C, = 3/4(3/n)lI3, a = 0.44, b = 7 . 8  and Vj is the Coulomb poten- 
tial created by the jellium: 

r c R  

- N / r =  - (4n/3)R3n+/r r 5  R. 
In order to find the equilibrium density n(r), one has to solve the Euler-Lagrange 
equation 

where pi is the chemical potential. Since we are interested only in A’-order changes in 
n(r) with respect to the unconstrained equilibrium density no(r) (see equation (ll)), we 
can write without loss of generality 

6&(n)/6n + ArL Y,, = pA (21) 
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n(r) = no(r) + Sn(r) = no(r)  + Af(r)YLO (22) 
withf(r) an arbitrary function of r that depends on L.  Integrating equation (22) over dr, 
one easily sees that n(r) is properly normalised to first order in A .  Thus, one can replace 
in equation (21) pa by the A = 0 chemical potential p .  Substituting equation (22) into 
equation (21) and using the equilibrium condition at A = 0 

W o ) / ~ n o  = P 
we get the following integro-differential equation for f(r): 

In equation (23), n6 ( r )  denotes the r-derivative of the (spherical) equilibrium density 
no(r), and rs(no) = ( 4 7 ~ n ~ / 3 ) - ~ / ~  is the local radius per electron. It is worth noting that 
the differential character of equation (23) arises from the Weizsacker correction. Had 
we taken P = 0, we would have ended up with a much simpler integral equation, as is 
the case in references [4] and [15]. After determining the induced radial densityf(r) we 
have 

(Q)* = 1 drrLYLon(r)  = 1 drrLYL06n(r). 

Consequently, to obtain the static polarisability within this method, one has to solve 
an integro-differential equation and perform an integral. This is much simpler than 
solving the CHFproblem (equation (10)) and carrying out a delicate numerical derivative 
with respect to the small parameter A (see equation (11)). 

Before we present the results corresponding to the exact solution to equation (23), 
let us discuss two limiting cases. First notice that neglecting kinetic, exchange and 
correlation contributions we recover the classical limit. The resulting integral equation 

has solutions of the kind 

f(r) = AS(r - R). 

Upon substitution into equation (25) one finds: 

A = - [(2L + 1 ) / 4 ~ ] R ( ~ - ' )  

and from equation (24), 

ac1 = [(2L + 1)/4n]R(2Lt1) 

which is the classical result (the coefficient in front of R(2L+1) comes from the spherical 
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Figure 3. Nag* normalised induced electron den- 
sities r*f(r) obtained from the constant-electron- 
density model. Full curve, L = 1; broken curve, 
L = 10. 

- 

harmonic YLo). One can also arrive at this result from the surface oscillations of a charged 
incompressible and irrotational liquid drop, a well known model in nuclear physics (see, 
e.g., appendix 6A of reference [28]). 

The next step in complexity is to consider the electron density as constant up to the 
jellium surface. This is basically the model of reference [4], which yields polarisabilities 
smaller than the classical value. In this case equation (23) becomes again an integral 
equation that could be solved analytically (see reference [4]) but that we have solved 
numerically using the same technique applied in the integro-differential case. Following 
reference [26], we have normalised f(r) as follows: 6 drr2f(r)  = 1. (29) 

In figure 3 we have drawn the quantity r2f(r) corresponding to the Nag* cluster for L = 
1 and L = 10. The crudeness of this model will be more apparent when we present in the 
next subsection the solutions corresponding to the Thomas-Fermi-Dirac-Weizsacker 
(TFDW) electronic density. 

3. Results 
3.1. Full variational results 

Equation (23) has been solved by standard matrix analysis techniques, after discretising 
it by using three-point formulae for the no(r) andf(r) r-derivatives and the trapezoidal 
rule to perform the Coulomb integrals. We have imposed the boundary conditions 
f(m) = 0 andf(0) = 0, the latter one in order to have &(r) well defined at r = 0. 

Figures 4 and 5 show r2f(r) normalised to unity, corresponding to Agz0 and Nazo. The 
vertical lines indicate the position of the jellium surface. The sizeable spill-out of the 
electron-induced density is clearly manifested in these figures. These induced densities 
are in qualitative agreement with those obtained by Ekardt [26] in a full RPA calculation. 

We have found that the position of the induced density peak depends little on L for 
small values of L.  Actually, for a given N-cluster, the peak moves inwards when L 
increases from L = 1 up to a certain L,,, which depends on N .  From L,,, on, the peak 
moves outwards and for L 9 L,,,, it will eventually lay much farther away from R than 
the L = 1 peak. This is at variance with the findings of reference [26]. We shall come 
back to this point when we discuss tables 1 and 2 in the next subsection. 
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Figure 4. Ag,, normalised induced electron den- 
sities r’f(r) obtained from equation (23). Full 
curve, L = 1; broken curve, L = 5. 
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Figure 5. As figure 4 but for Nazo. 

Figure 6. Dipole polarisabilities for Na clusters 
obtained with two different values of the Weiz- 
sacker coefficient /3 for L = 1. The crosses are the 
RPA results of reference [8] and the triangles the 
experimental values of reference [16], as quoted 
in reference [15]. 

It is interesting to note that, apart from a sizeable shift outwards, r 2 f ( r )  look very 
much as - r2nh(r)  (see, e.g., figures 1 and 2 of reference [21]). This is what one might 
expect to find as the most natural generalisation of the classical induced density, equation 

Figure 6 displays the dipole polarisability of Na clusters in units of the classical value 
acI. The crosses correspond to the RPA results of Ekardt [8], and the triangles to the 
experimental values of reference [16]. The results obtained from equation (23) are the 
curve labelled /3 = 0.5. 

To see how the chosen /3 influences the polarisability value, we have also drawn the 
results corresponding to /3 = 1. The increase of the polarisability with /3 is not surprising, 
since this parameter acts on the surface diffuseness and exponential fall-off of the 
electronic density [21]. This makes clear the interest of looking at other moments of the 
S ( E )  when one studies the polarisability with phenomenological models. Actually, since 
our energy density functional is similar to that of reference [8], one should not expect 
real improvements on the results obtained there. We attribute the minor differences 

(26) * 
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Figure 8. Ag static polarisabilities corresponding 
to L = 1 and 2. 

between the results of both calculations to the different correlation energy we use and, 
mainly, to the different fall-off of TF and KS densities. The same comment applies to the 
results obtained in reference [14] .  

Figure 7 shows the L = 1 , 2  and 3 static polarisabilities of Na clusters. Each polaris- 
ability has been normalised to its classical value, equation (28) .  Also shown in this figure 
is the dipole polarisability corresponding to the constant electron density (broken curve). 
The lack of spill-out in the induced density results in a value of CY below mCl, this effect 
being more sizeable for small clusters in which the surface-to-volume ratio is larger than 
in big clusters. Analogously, figure 8 shows the L = 1 and 2 polarisabilities of Ag clusters. 

Figure 9 displays the evolution with N of the E l  and E3 energies in the case of Na 
clusters for L = 1 , 2  and 5.  Several interesting features show up. First, notice that the 
variance of S ( E ) ,  estimated by 

0’ - (E: - E:)/4 (30) 
increases with increasing L ,  meaning that for a given cluster, the bigger the multipolarity, 
the lesser collective the mode. This behaviour is especially marked for small clusters. 
Equivalently, a2 decreases with Nfor  a given L ,  indicating that big clusters can sustain 
surface collective oscillations of higher multipolarity than small clusters. 

It is also interesting to consider the limit of E,(L) and E, (L)  when Ngoes to infinity. 
We have shown in reference [21] that for a constant electron density (see also reference 
1141) 
m ,  = (h2/2m)noLR(2L+1) (31) 

m3 = ( h 2 / m ) 3 9 ~ ( 2 ~  + I)(L - i)yn$’3~(2L-1) + 2 ~ d e ~ ( h ~ / m ) * n ~ ~ ( ~ ~ + l ) ~ ’  /(2L + 1) 
(32)  

(33) 

with no = n f .  Thus, when R (i.e., N) goes to infinity we recover Mie’s classical result: 

E:(L) = h2Cc)2pL/(2L + 1) 
where CO’, = 4nnoe2/m. 
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and L = 1 , 2  and 5. As in figure 1, the two crosses 0 400 

N represent experimental results. 

In the classical limit, we have from equation (28) that 

Combining equations (31) and (34), when N +  x we get: 

which is precisely E:(L). Consequently, in this limit we obtain again the surface plasmon 
energy Ep(L) and have o2 = 0. E,(L) is indicated at the right-hand edge of each part of 
figure 9 by a short horizontal trace. For high values of L and small clusters, E ,  and E ,  
are blue-shifted with respect to E,, but when Nincreases, E ,  and E ,  tend to E,(L) from 
below. As an example, for the Nalooo cluster we have found E ,  = 0.119 and E3 = 0.122 
for L = 1, whereas the classical limit is E,  = 0.125 (in atomic units). 

m-,  = icu = [(2L + 1 ) / 8 ~ c e ~ ] R ( * ~ + ' ) .  

E?(L)  = h*W3/(2L + 1) 

(34) 

(35) 

Following references [6] and [26], we have introduced a distance 6 such that 
(YyICYc, = (1 + 6/R)(2L+l). (36) 

Since (Y > cycI, 6 is a positive quantity. When L = 1, in the limit R + x it gives the 
location 6, of the image plane [29] with respect to the jellium surface. For the NaIooo 
cluster we have found 6 = 1.40, in agreement with the Lang-Kohn value 6, = 1.3 i: 0.2 
[29]. We have also found 6 = 1.25 for Na,, 1.33 for Nag*, 1.37 for Na300 and 1.38 for 
Nasoo, all compatible with the above 6,. It seems, however, that these values point to a 
6, slightly bigger than 1.40. 

3.2. Trial function calculations 
Although the solution of equation (23) turns out to be rather easy, it is desirable to make 
use of a much simpler, yet reliable method to obtain (Y. A standard procedure consists 
of expanding equation (18) up to terms in A* using equations (19) and (22), and then 
minimising E[n]  by means of a trial functionf(r) which depends on a few parameters [6]. 
After a straightforward calculation we get 
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Table 1. Nay, static polarisability @/(ucI and 6 parameter (in au) defined in equation (36) for 
L = 1 to 15. The row labelled ‘variational’ corresponds to the exact solution to equation 
(23). The rows labelled 2~ and 4~ are trial function results obtained with two and four 
parameters respectively (see equation (38)). The entry SEFR is the value of Sorbello’s 
electrostatic force rule, equation (39). 

Variational 2P 4P 
Nay2 
L @/@Cl 6 @I@,, 6 @I@CI 6 

1 1.24 1.33 1.23 1.30 1.24 1.33 
2 1.42 1.31 1.40 1.26 1.41 1.29 
3 1.61 1.27 1.59 1.23 1.60 1.26 
4 1.81 1.24 1.76 1.16 1.80 1.21 
5 2.03 1.20 1.96 1.14 2.01 1.18 
6 2.25 1.17 2.15 1.10 2.21 1.14 
7 2.52 1.15 2.36 1.06 2.44 1.11 
8 2.85 1.15 2.62 1.05 2.73 1.10 
9 3.30 1.17 2.97 1.07 3.10 1.11 

10 3.97 1.22 3.48 1.11 3.64 1.15 
11 5.01 1.31 4.25 1.17 4.47 1.21 
12 6.72 1.43 5.49 1.27 5.75 1.31 
13 9.68 1.58 7.54 1.40 7.91 1.44 
14 15.1 1.77 11.2 1.57 11.8 1.60 
15 25.8 2.00 18.1 1.77 19.0 1.80 
SEFR 1 .0000 0.9885 0.9937 

This equation is the generalisation of equation (9) of reference [6] for any multipolarity 
L. Obviously, a fully variational determination of f(r) from equation (37) is completely 
equivalent to solving the Euler-Lagrange equation (23).  We have verified numerically 
this point because it constitutes a test of the numerical method. Indeed, it is apparent 
from equation (11) that the right-hand side of equation (37) yields m-, for the function 
f ( r )  that minimises E[n] expanded up to , I 2 .  We have checked that when we substitute 
into equation (37) the function f(r) solution of equation (23) ,  we get avalue of a = 2m-l  
that coincides with the values shown in the previous subsection within -0.1 %, which 
sets the limit of our numerical accuracy. 

In practice, the usefulness of equation (37) is to furnish (Y by minimising 6E/A2 
employing a trial function f(r; p i )  which depends on a few parametersp,, i = 1, . . . , m. 
Guided by figures 4 and 5,  a natural guess for f ( r ;  p i )  is 

i.e., a polynomial times the r-derivative of the variational unperturbed density no (easily 
available from variational TFDW calculations) shifted a certain amount p l .  This shift is a 
basic ingredient if one wants to reproduce the full variational results. For instance, p 1  
and p 2  are enough to recover the Nag2 variational results for L = 1 to 5 within -3%. 
That can be seen in table 1, where we have collected the exact, two-parameter ( 2 ~ )  and 
four-parameter ( 4 ~ )  results for L = 1 to 15 corresponding to Nag2. Table 2 collects the 
exact and 4~ results for Na20 up to L = 10. 

f ( G P i >  = ( P 2  + P3r + P 4 T 2 )  n;l(r + P 1 )  (38) 
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Table 2. As table 1 but for NaZo up to L = 10. 

Variational 4P 
Na,, 
L f f l f f c ,  6 @I@,, s 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
SEFR 

1.40 1.28 
1.70 1.22 
2.01 1.14 
2.35 1.08 
2.79 1.06 
3.50 1.10 
4.83 1.20 
7.56 1.37 

13.6 1.60 
28.6 1.88 

0.9997 

1.40 1.28 
1.70 1.22 
2.01 1.14 
2.33 1.07 
2.74 1.04 
3.36 1.06 
4.50 1.15 
6.77 1.29 

11.7 1 .so 
23.3 1.76 

0.9958 

0.1 -I 

1 
0 

I 
- --_ _. 
10- 20 30 

Figure 10. Nag2 normalised induced electron den- 
sity r I f ( r )  for L = 1 obtained from equation (23) 
(full curve) and from equation (37) (broken 
curve). The chain curve corresponds to the nor- 

r malised r2nh(r). 

In figure 10 we compare the normalised r2f(r) induced variational density (full curve) 
and the 4~ induced trial density (broken curve) corresponding to Na,, and L = 1. Notice 
that both densities coincide for large r .  This is the reason for the excellent agreement 
between both calculations (see equation (24)). We also show the normalised r2nb ( r )  
(chain curve). Notice the key role played by the shifting parameter p 1  introduced in 
equation (38). Indeed, trial functions of the kindpznh ( r )  yield &/acI = 1.18 for Nazo and 
1.10 for Na,, in the dipole case. 

We have checked that our L = 1 results fulfil Sorbello's electrostatic force rule (SEFR) 
with high accuracy. This rule states that for L = 1 [30] 

4n  1 
- - 3 (,- R3 loR d r  r3f(r) + 1; drf(r)) = 1. (39) 

One can see from tables 1 and 2 that this rule, indicated by the entry SEFR, is verified 
very well for the variational density and also for the 4~ and 2~ trial densities. 

Within the trial function procedure, one may take advantage of the fact that m-, can 
be obtained in two independent ways (see equation (ll)), either directly from equation 
(37) or using equation (24), to carry out another test on the numerical method. However, 
we would like to emphasise that, in contrast to what is stated in reference [6], this test 
only concerns the minimisation routine and not the adequacy of the trial functionf(r). 
This is obvious if one realises that the equalities (11) hold only for the equilibrium (i.e. 
minimum) solution of the constrained problem equation (18). This minimum solution 
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0.1 i 

0 

Figure 11. Nag* normalised induced electron den- 
sities r2f(r) obtained from equation (23). Full 
curve, L = 1; broken curve, L = 6 ;  chain curve, 

r L = 15. 

might well be obtained within a class of poor trial densities. As an example, consider the 
1~ trial densityp2n;l(r), for which the minimisation of equation (37) can be carried out 
analytically because 6E/A2 is parabolic inp,. Both ways of obtaining m-, yield the same 
result since the calculation is consistent and numerically exact, but the polarisability is 
wrong. In our 2~ and 4~ calculations, the polarisabilities obtained with either formula 
agree to better than O S % ,  for L < 5 .  

Finally, we would like to comment on the non-monotonic behaviour of 6 with L 
shown in tables 1 and 2. As Ekardt pointed out [26], 6 seems to decrease when L 
increases (for Nay*, up to L - 8 in our model and up to L - 10 in reference [26]). 
However, above some value of L we have found that 6 increases rapidly, as well as E/ 
ac1. To check that this is not a numerical artifact, we have increased the radius of the 
sphere in which the calculations have been performed and have also used in equation 
(23) the KS n,(r) density, which has a different fall-off than the TFDW density. In both 
cases, we have found the same qualitative behaviour of 6 ( L ) .  

We show in figure 11 r2f(r)  for Nay, corresponding to L = 1, 6 and 15. From this 
figure, it is clear that the origin of the increase of S is twofold: the r2f(r) peak moving 
outwards and its spreading. These facts should be contrasted with RPA calculations 
performed for values of L higher than those of reference [26]. 

It is worth mentioning that, for a given cluster, the response at increasingly higher 
values of L is not classical at all and is eventually dominated by electron-hole con- 
tributions of non-collective character [26,21]. Consequently, our TFDW calculation can 
only furnish qualitative results for these high multipole polarisabilities. 

4. Summary and outlook 

In this paper we have thoroughly studied the static multipole polarisability of small 
metallic clusters in a TFDW approximation. It has led us to an integro-differential equation 
for the induced electronic density that we have solved self-consistently using the TFDW 
electronic density of the unperturbed spherical cluster. By suitable simplifications of 
that equation, the classical and constant electronic density results are recovered. 

Besides the polarisability, we have also studied other moments of the strength 
function from which we have defined two average energies and estimated the width of 
the surface mode for different multipolarities. We have found that the width of the 
resonance increases rapidly when L increases, this effect being more marked for small 
clusters and big values of L.  
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For Na clusters, for which the jellium model is adequate, we have obtained an 
N-dependence of the dipole resonance energy that compares well with very recent 
experimental results [31]. This is not quite so for Ag clusters [32]. The discrepancy is 
attributed to the role played by the Ag d electrons (see reference [32] for a thorough 
discussion of this effect). 

To circumvent the solution of the integro-differential equation, we have minimised 
the constrained energy using a trial function procedure. This method basically yields the 
same results as the exact solution to that equation for small values of L ,  which are the 
physically more relevant. 

Our results agree with detailed RPA calculations on average. The simplicity of our 
self-consistent method has allowed us to test the influence on the polarisability of the 
unperturbed electronic density. Using different values of the effective Weizsacker 
coefficient, we have shown that cv depends appreciably on the unperturbed density 
profile (see also reference [6]). 

Despite a qualitative agreement, the dipole polarisability obtained in the present 
calculation and in other calculations quoted herein, is still lower than experiment by 
about 20%. To improve it, some attempts have been made to go beyond SJM by taking 
into account the ionic structure [ l l ] .  However, averaged over all orientations of the 
cluster, the polarisability results are analogous to those of the SJM. Another effect 
associated with the jellium background, namely its elastic deformation due to the 
external polarising field, increases the dipole polarisability by only about 1% [ 121. Some 
morphological changes in the jellium density, like an effective surface diffuseness, would 
also increase the polarisability, since it increases the electron spill-out [33]. 

The major part of the discrepancy between theoretical and experimental results has 
thus been attributed to the LDA to the exchange-correlation energy in DFT [13]. The self- 
interaction correction (SIC) [34] to the LDA reduces the disagreement from -20% to 
-10%. This is so because the SIC-LDA method yields a better energy-level structure than 
the LDA [34], influencing the RPA polarisability results as stressed by Ekardt and Penzar 
[35]. Indeed, the SIC-LDA method improves the asymptotic behaviour of the LDA 
exchange-correlation potential, leading to better single-electron wavefunctions. The 
improvements of the SIC can be incorporated in our KS [21] and TFDW method. Work 
along these lines is in progress. 
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